Multiplicative nonnegative graph embedding

نویسندگان

  • Changhu Wang
  • Zheng Song
  • Shuicheng Yan
  • Lei Zhang
  • HongJiang Zhang
چکیده

In this paper, we study the problem of nonnegative graph embedding, originally investigated in [14] for reaping the benefits from both nonnegative data factorization and the specific purpose characterized by the intrinsic and penalty graphs [13]. Our contributions are two-fold. On the one hand, we present a multiplicative iterative procedure for nonnegative graph embedding, which significantly reduces the computational cost compared with the iterative procedure in [14] involving the matrix inverse calculation of an M -matrix. On the other hand, the nonnegative graph embedding framework is expressed in a more general way by encoding each datum as a tensor of arbitrary order, which brings a group of byproducts, e.g., nonnegative discriminative tensor factorization algorithm, with admissible time and memory cost. Extensive experiments compared with the state-of-the-art algorithms on nonnegative data factorization, graph embedding, and tensor representation demonstrate the algorithmic properties in computation speed, sparsity, discriminating power, and robustness to realistic image occlusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive multiplicative updates for quadratic nonnegative matrix factorization

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Quadratic Nonnegative Matrix Factorization (QNMF) is a new class of NMF methods where some factorizing matrices occur twice in the approximation. QNMF finds its applications in graph partition, bi-clustering, graph matching, etc. However, the original QNMF algorithms ...

متن کامل

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

On multiplicative Zagreb indices of graphs

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

متن کامل

On trees and the multiplicative sum Zagreb index

For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009